LogoLogo
  • πŸ‘‹Welcome to Groclake
  • ⏩Jump right in
  • πŸ—£οΈIntroduction to Groclake
  • 🧠High level Concepts
    • Agent Discovery
    • Agent Registry
    • Agent Communication
      • Agent Text Transfer Protocol - ATTP
    • Agent Security
      • Agent Private Cloud - APC
      • Authentication & Encryption
      • Zero Trust Policy
  • πŸ’½Installation & Guide
  • πŸ—οΈGroclake Use Cases
  • πŸ“°Groclake Records
  • Example Codes
  • GrocAgent
    • What is GrocAgent?
    • Example Chat Agent
    • Reflections in GrocAgent
      • Workflow of Reflection Handler
  • Lakes
    • πŸ’ΎData & Model Management
      • Datalake
        • Create Datalake
        • Retrieve Document
        • Upload Documents
        • Datalake Connections
          • Snowflake integration
      • Vectorlake
        • Creating vector
        • Generating Vector
        • Pushing Vector
        • Retrieve Document
        • Searching Vector
      • Modellake
        • Create Modellake
        • Language Translation
        • Conversation AI
        • Text to Speech
        • Chat Completion
      • Knowledgelake
        • Create Knowledge Base
        • Push Documents from a URL
        • Push Documents from Local Storage
        • Searching for Information
    • βš’οΈTool Management & Gateway
      • Toollake
        • Tools
        • Salesforce CRM Integration
        • Slack Communication Module
        • New Relic Integration
        • Google Calendar Integration
          • Check Slot Availability
          • Get Available Slots
          • Delete Event
          • Create new event
          • Create new calendar event
    • πŸ€–Agent Management & Deployment
      • Agentlake
        • Register your agent
        • Fetch agent details & categories
        • Create Agent Private Cloud (APC)
        • Assign Agent Private Cloud (APC) to an Agent
      • Promptlake
        • Setting Connection & Initializing
        • Storing a Prompt
        • Fetching a Prompt
        • Example API Calls
      • Memorylake
        • Context Component Examples
        • Value Structure
        • Setup & Guide
        • Storing & Retrieving Memory
        • Wildcard Search
        • Updating Memory Quality
    • πŸ—ƒοΈIndex Stores
      • Cataloglake
        • Create catalog
        • Generate Product Data
        • Fetch Catalog Data
        • Push Product Data
        • Optimize Data Retrieval with Catalog Caching
        • Search for Products
        • Filter Product Search
        • Update Product Data
        • Recommend Products Based on Product Name
        • Update Inventory in Catalog
        • Fetch Inventory Details from Catalog
        • Fetch Product Price
        • Update Product Price in Catalog
        • Cache Image in Catalog
        • Sync Your Catalog with external ecomm platforms
        • Deleting items
        • Address Parsing and Intent Extraction
        • Creating Mapper
        • Convert Mapper's Metadata
        • Fetching Mapper
        • Updating Mapper
        • Example use case of Cataloglake
      • Joblake
        • Joblake Mapping
        • Creating a Joblake
      • Resumelake
        • Resumelake Mapping
        • Creating a Resumelake
Powered by GitBook
On this page
  • Introduction
  • How Memorylake Works
  • Key Structure
  1. Lakes
  2. Agent Management & Deployment

Memorylake

Introduction

Memorylake is a tool that allows users to efficiently store, retrieve, and manage key-value pairs in Redis using a structured format. This guide will explain how to use Memorylake with practical examples and small code snippets to help you get started.

How Memorylake Works

Memorylake uses Redis as a key-value store. Each piece of stored information consists of:

  • Key: A unique identifier generated using memory_context values.

  • Value: A structured JSON-like object that stores query-response data along with metadata.

As we are using Redis pipelines, the concept remains the sameβ€”we store keys with values.

Key Structure

The key is generated using the following structure:

user_uuid:context_entity_id:context_id:memory_id

Breakdown of Key Components

  • user_uuid: The unique identifier of the user.

  • context_entity_id: Represents the broader category or application where the memory is being stored. This could be a chatbot, a recommendation system, or an AI assistant. It helps in categorizing and differentiating different applications of stored memory.

  • context_id: Represents a specific session, instance, or interaction within the context_entity_id. For example, in a chatbot, this could be a conversation session, while in a support ticketing system, it could be a ticket ID.

  • memory_id: A unique identifier for the specific memory entry within a session or interaction. This allows multiple memory records to be stored under the same context_id, tracking multiple interactions within the same session.

β”œβ”€β”€ user_uuid
β”‚   └── context_entity_id
β”‚       └── context_id
β”‚           └── memory_id

PreviousExample API CallsNextContext Component Examples

Last updated 1 month ago

πŸ€–