LogoLogo
  • πŸ‘‹Welcome to Groclake
  • ⏩Jump right in
  • πŸ—£οΈIntroduction to Groclake
  • 🧠High level Concepts
    • Agent Discovery
    • Agent Registry
    • Agent Communication
      • Agent Text Transfer Protocol - ATTP
    • Agent Security
      • Agent Private Cloud - APC
      • Authentication & Encryption
      • Zero Trust Policy
  • πŸ’½Installation & Guide
  • πŸ—οΈGroclake Use Cases
  • πŸ“°Groclake Records
  • Example Codes
  • GrocAgent
    • What is GrocAgent?
    • Example Chat Agent
    • Reflections in GrocAgent
      • Workflow of Reflection Handler
  • Lakes
    • πŸ’ΎData & Model Management
      • Datalake
        • Create Datalake
        • Retrieve Document
        • Upload Documents
        • Datalake Connections
          • Snowflake integration
      • Vectorlake
        • Creating vector
        • Generating Vector
        • Pushing Vector
        • Retrieve Document
        • Searching Vector
      • Modellake
        • Create Modellake
        • Language Translation
        • Conversation AI
        • Text to Speech
        • Chat Completion
      • Knowledgelake
        • Create Knowledge Base
        • Push Documents from a URL
        • Push Documents from Local Storage
        • Searching for Information
    • βš’οΈTool Management & Gateway
      • Toollake
        • Tools
        • Salesforce CRM Integration
        • Slack Communication Module
        • New Relic Integration
        • Google Calendar Integration
          • Check Slot Availability
          • Get Available Slots
          • Delete Event
          • Create new event
          • Create new calendar event
    • πŸ€–Agent Management & Deployment
      • Agentlake
        • Register your agent
        • Fetch agent details & categories
        • Create Agent Private Cloud (APC)
        • Assign Agent Private Cloud (APC) to an Agent
      • Promptlake
        • Setting Connection & Initializing
        • Storing a Prompt
        • Fetching a Prompt
        • Example API Calls
      • Memorylake
        • Context Component Examples
        • Value Structure
        • Setup & Guide
        • Storing & Retrieving Memory
        • Wildcard Search
        • Updating Memory Quality
    • πŸ—ƒοΈIndex Stores
      • Cataloglake
        • Create catalog
        • Generate Product Data
        • Fetch Catalog Data
        • Push Product Data
        • Optimize Data Retrieval with Catalog Caching
        • Search for Products
        • Filter Product Search
        • Update Product Data
        • Recommend Products Based on Product Name
        • Update Inventory in Catalog
        • Fetch Inventory Details from Catalog
        • Fetch Product Price
        • Update Product Price in Catalog
        • Cache Image in Catalog
        • Sync Your Catalog with external ecomm platforms
        • Deleting items
        • Address Parsing and Intent Extraction
        • Creating Mapper
        • Convert Mapper's Metadata
        • Fetching Mapper
        • Updating Mapper
        • Example use case of Cataloglake
      • Joblake
        • Joblake Mapping
        • Creating a Joblake
      • Resumelake
        • Resumelake Mapping
        • Creating a Resumelake
Powered by GitBook
On this page
  • Introduction
  • Key Features
  • Why Use Promptlake?
  • Conclusion
  1. Lakes
  2. Agent Management & Deployment

Promptlake

Introduction

Promptlake is a structured framework for storing and retrieving LLM (Large Language Model) prompts in a MongoDB-backed data pipeline within Datalake. It allows developers to efficiently manage prompts, track different versions, and maintain historical records for AI interactions.

Promptlake integrates with Datalake, leveraging MongoDB as the primary database for storing prompt data, ensuring scalability and structured query support.


Key Features

βœ… Versioned Prompt Storage – Keeps track of prompt history using incremental versions. βœ… Easy Retrieval – Fetch specific versions or all stored prompts based on query parameters. βœ… Seamless MongoDB Integration – Uses MongoDB as a backend storage within Datalake. βœ… Scalable & Efficient – Ensures high availability and quick query execution.

Why Use Promptlake?

βœ… Tracks Prompt History – Ensures AI models use the latest data. βœ… Scalable & Efficient – Works with enterprise-scale AI applications. βœ… Versioning System – Enables retrieval of different versions of stored prompts. βœ… Seamless MongoDB Integration – Uses Datalake’s MongoDB pipeline for optimized data storage.


Conclusion

Promptlake provides a structured and version-controlled approach to storing LLM prompts within a MongoDB-backed Datalake pipeline. It enhances AI-driven workflows by enabling efficient prompt tracking, retrieval, and management.

This makes Promptlake a powerful tool for building AI-driven conversational agents, chatbots, and other NLP-based applications that rely on past interactions for improved responses.

PreviousAssign Agent Private Cloud (APC) to an AgentNextSetting Connection & Initializing

Last updated 1 month ago

πŸ€–